
C5: Front-and Authentication 1

COM644 Full-Stack Web and App Development

Practical C5: Front-end Authentication

Aims
• To identify authentication as a key component in online applications
• To introduce Authentication as a Service and Auth0 as an authentication

provider
• To install Auth0 and integrate it with an Angular application
• To create an Authentication Service
• To implement authenticated login and logout
• To demonstrate the preservation of application state
• To implement restricted access to selected content

Contents
C5.1 AUTHENTICATION AS A SERVICE ... 2

C5.1.1 SIGNING UP FOR AUTH0 ... 2
C5.1.2 CONFIGURING AUTH0 .. 3

C5.2 ADDING AUTHENTICATION TO THE APPLICATION ... 5
C5.2.1 INSTALL AUTH0 PACKAGE ... 5
C5.2.2 CREATE AN AUTHENTICATION SERVICE ... 6
C5.2.3 TEST THE AUTH0 INTEGRATION .. 7
C5.2.4 COMPLETE THE AUTHENTICATION SERVICE .. 10

C5.3 AUTHENTICATION-DEPENDENT CONTENT ... 12
C5.3.1 ADD A LOGOUT BUTTON ... 12
C5.3.2 PRESERVING APPLICATION STATE... 14
C5.3.3 RESTRICTING ACCESS TO SELECTED CONTENT ... 16

C5: Front-and Authentication 2

C5.1 Authentication as a Service

Authentication is emerging as one of the most critical aspects of web-based software
development. Digital security has become front-page news and a lack of user confidence in
the security of their data is one of the main factors that limits the uptake of new online
systems.

Traditionally, software developers have handled authentication in-house, using self-written
routines to handle login, authenticated transactions and protection from unauthorized
users; but recently a number of 3rd party vendors have made available cloud-based systems
which accept requests from user software and handle user authentication before passing
control back to the host application.

One of the most popular providers of Authentication as a Service (AaaS) is Auth0
(https://auth0.com), who provide a powerful free service which handles user authentication
along with an extensive dashboard for user analysis.

C5.1.1 Signing up for Auth0

In order to use Auth0 in our application, we first need to sign up for a free account. Visit
https://auth0.com and click on the “Sign Up” button in the top-right corner. You should
then be presented with the screen shown in Figure C5.1 below.

Figure C5.1 Auth0 Sign-up

C5: Front-and Authentication 3

You can sign up either by providing a username and password or through one of your social
media accounts.

C5.1.2 Configuring Auth0

Once signed up, you will be presented with two pages 2 pages of brief details. On the first
(shown in Figure C5.2 below), choose your name and region and click ‘Next’. On the second
screen (Figure C5.3), provide information about your intentions (I suggest selecting
‘Personal’, ‘Developer’ and ‘Just playing around’) and click the ‘Create Account’ button.

Figure C5.2 Choose Name and Region

Figure C5.3 Further Details

When the account is created, you will see your main Dashboard (Figure C5.4) which will
provide analysis and report on users and logins for all of your applications.

Figure C5.4 New Client

C5: Front-and Authentication 4

Each application that you want to manage with Auth0 requires you to create a new Auth0
Client, so click on the “New Client” button. First, you will be asked to provide a name and
select a client type as shown in Figure C5.5 below. Any suitable name is OK, but make sure
you select “Single Page Web Application” as the client type.

Figure C5.5 Select Client Type

Next, in response to the question ‘What technology are you using for your web app?’, click
on the icon for ‘Angular 2+’ (Figure C5.6).

C5.6 Choose Technology Stack

Finally, from the menu in the next page, click on the ‘Settings’ link to display the list of Client
settings as shown in Figure C5.7.

C5: Front-and Authentication 5

Figure C5.7 Settings

In the settings list, scroll down to ‘Allowed callback URLs’ and add the URL
http://localhost:4200/callback. This is the URL to which the browser will be directed once
an authentication operation has been processed – we will add this route to our application
later.

Figure C5.8 Specify Callback URL

C5.2 Adding Authentication to the Application

C5.2.1 Install Auth0 Package

Now that the Auth0 Client is prepared, we can add authentication to our application.

C5: Front-and Authentication 6

First, we use npm to install the auth0-js package to our Angular application by the command

U:/C5> npm install --save auth0-js

This adds a JavaScript library to our node_modules folder and we need to include it in our
application by specifying its path in the scripts entry within the file .angular-cli.json.

File: C5/.angular-cli.json

...

"scripts": ["../node_modules/auth0-js/build/auth0.js"];

...

C5.2.2 Create an Authentication Service

The next stage is to provide the new Angular service that will handle invoke Auth0 to handle
authentication within the application.

The code for the Authentication Service can be found by clicking the “Quickstart” link in the
menu shown in Figure C5.7 above and selecting Angular 2+ from the next menu presented.
Scrolling down to “Create an Authentication Service” will reveal the code with your own
ClientID, Domain and Audience already filled in.

(Note: If you cannot find the menu, click on “Clients” in the menu on the left-hand side of
the browser, then click on your Client name.)

C5: Front-and Authentication 7

File: C5/src/app/auth.service.ts

import { Injectable } from '@angular/core';
import { Router } from '@angular/router';
import { filter } from 'rxjs/operators';
import * as auth0 from 'auth0-js';

@Injectable()
export class AuthService {

 auth0 = new auth0.WebAuth({
 clientID: ' --- YOUR CLIENT ID --- ',
 domain: ' --- YOUR DOMAIN --- ',
 responseType: 'token id_token',
 audience: ' --- YOUR AUDIENCE --- ',
 redirectUri: 'http://localhost:4200/callback',
 scope: 'openid'
 });

 constructor(public router: Router) {}

 public login(): void {
 this.auth0.authorize();
 }

}

Note: You will need to change the redirectUri value in the code above to
http://localhost:4200/callback. The code in the Quickstart example defaults to port 3000.

C5.2.3 Test the Auth0 Integration

To test the installation of the Auth0 package and its integration into our application, we can
add a “Login” button to our home page that invokes the AuthService login() function.

First, we need to register the AuthService with the application by adding it to
app.module.ts. As usual, we import the service and add it to the list of providers in the
@ngModule definition.

C5: Front-and Authentication 8

File: C5/src/app/app.module.ts

...

import { AuthService } from './auth.service';

...

providers: [WebService, AuthService],

...

}

Now, we create the Callback Component to support the callback URL that we provided
when specifying the Auth0 Client settings.

Note how we choose to define a template rather than a templateURL. This is commonly
done if the template is very brief. Take care that the template code is specified between
backtick characters ` `. This character is available on a Mac keyboard (usually beside the
left Shift key), but if not available on a PC keyboard you can obtain it by holding down the
ALT key and then tapping ‘9’ and ‘6’ on the numeric keypad.

File: C5/src/app/callback.component.ts

import { Component } from '@angular/core';
import { Router } from '@angular/router';

@Component({
 selector: 'app-callback',
 template: `<p>Loading...</p>`,
 styleUrls: []
})

export class CallbackComponent {

 constructor(private router: Router) {}

 ngOnInit() {
 this.router.navigate(['']);
 }
}

C5: Front-and Authentication 9

Now that the CallbackComponent is created, we can add the /callback route to the list
supported and register the Component with the application.

File: C5/src/app/app.module.ts

 import { CallbackComponent } from ‘./callback.component’;

...

var routes = [

 ...

 {
 path: 'callback',
 component: CallbackComponent
 }
]

...

@NgModule({
 declarations: [
 AppComponent, Businesses, HomeComponent,
 BusinessComponent, CallbackComponent
],

...

Next, we import the AuthService into the HomeComponent and inject it into the
constructor so that we can refer to it in the template.

File: C5/src/app/home.component.ts

import { Component } from '@angular/core';
import { AuthService } from './auth.service';
@Component({
 selector: 'home',
 templateUrl: './home.component.html',
 styleUrls: []
})

export class HomeComponent {
 constructor(private authService: AuthService) {}
}

C5: Front-and Authentication 10

Now, we can add a button to the HomeComponent template and bind the click action to
the login() function within the AuthService.

File: C5/src/app/home.component.html

<div class="jumbotron">
 <h1>We MEAN Business</h1>
 <button (click)="authService.login()">Login</button>
</div>

We can now test the Auth0 integration by loading the application and navigating to
http://localhost:4200/ to confirm that the button has been added to the template (Figure
C5.9). Clicking the button should result in the Auth0 login page being displayed (Figure
C5.10). Note that the login functionality is not yet complete and so the login action will not
fully work.

Figure C5.9 Login option

Figure C5.10 Auth0 Login

C5.2.4 Complete the Authentication Service

Now that we can see that everything is properly integrated, we can complete the
AuthService by taking the code from the Auth0 Quickstart example. (Scroll down to the
“Finish the service” section.

Note that we have changed the two lines highlighted in the code box below – changing a
navigation path from /home to /.

C5: Front-and Authentication 11

File: C5/src/app/auth.service.ts

...

@Injectable()

export class AuthService {

...

 public handleAuthentication(): void {
 this.auth0.parseHash((err, authResult) => {
 if (authResult && authResult.accessToken &&
 authResult.idToken) {
 window.location.hash = '';
 this.setSession(authResult);
 this.router.navigate(['/']);
 } else if (err) {
 this.router.navigate(['/']);
 console.log(err);
 }
 });
 }

 private setSession(authResult): void {
 const expiresAt = JSON.stringify(
 (authResult.expiresIn * 1000) + new Date().getTime());
 localStorage.setItem('access_token',
 authResult.accessToken);
 localStorage.setItem('id_token', authResult.idToken);
 localStorage.setItem('expires_at', expiresAt);
 }

 public logout(): void {
 localStorage.removeItem('access_token');
 localStorage.removeItem('id_token');
 localStorage.removeItem('expires_at');
 this.router.navigate(['/']);
 }

 public isAuthenticated(): boolean {
 const expiresAt =
 JSON.parse(localStorage.getItem('expires_at'));
 return new Date().getTime() < expiresAt;
 }

}

To complete the authentication setup, we now include a call to the AuthService
handleAuthentication() method in the application's root component
(app.component.ts). The method processes the authentication hash while the application
loads.

C5: Front-and Authentication 12

File: C5/src/app/app.component.ts

import { Component } from '@angular/core';
import { AuthService } from './auth.service';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})

export class AppComponent {

 constructor (private authService: AuthService) {
 authService.handleAuthentication();
 }
}

C5.3 Authentication-dependent content

C5.3.1 Add a logout button

One of the main uses of user authentication is to restrict access to certain content or actions
to users who have been successfully authenticated. We demonstrate this by providing a
second button to call the logout() function and then using the isAuthenticated()
function to control which button is displayed.

By combining the isAuthenticated() function with the Angular ngIf directive, we
specify that the Login button should only be displayed when there is no current
authenticated user, while the Logout button is displayed only when are user has successfully
logged in.

File: C5/src/app/home.component.html

<div class="jumbotron">
 <h1>We MEAN Business</h1>
 <button *ngIf="!authService.isAuthenticated()"
 (click)="authService.login()">Login</button>
 <button *ngIf="authService.isAuthenticated()"
 (click)="authService.logout()">Logout</button>
</div>

C5: Front-and Authentication 13

Running the application and checking its operation in the browser should confirm that the
Login and Logout buttons are displayed as intended.

Figure C5.11 Before login

Figure C5.12 After login

We can see how the authentication operates by opening the Browser console and selecting
the “Storage” (or “Application” in Chrome) tab and selecting the LocalStorage element. You
should be able to see how the login() function results in an access token, ID token and
expiry value being set, while the logout() function deletes these values. Examining the
login() and logout() source in the AuthService should also demonstrate how the
manipulation of values in LocalStorage is used to manage authentication.

In our application, we want to be able to login and logout from every page, so add the
buttons to the templates for the BusinessComponent and BusinessesComponent.

Files: C5/src/app/businesses.component.html
and C5/src/app/business.component.html

<div class="jumbotron">
 <h1>We MEAN Business</h1>
 <button *ngIf="!authService.isAuthenticated()"
 (click)="authService.login()">Login</button>
 <button *ngIf="authService.isAuthenticated()"
 (click)="authService.logout()">Logout</button>
</div>

...

C5: Front-and Authentication 14

To refer to the AuthService in the template, we also import it into the
BusinessesComponent and BusinessComponent TypeScript fles.

File: C5/src/app/businesses.component.ts

...

import { AuthService } from './auth.service';

...

 constructor(private webService: WebService,
 private authService: AuthService) {}

...

File: C5/src/app/business.component.ts

...

import { AuthService } from './auth.service';

...

 constructor(private webService: WebService,
 private route: ActivatedRoute,
 private formBuilder: FormBuilder,
 private authService: AuthService) {

...

Testing this in the browser shows that our login and logout options are indeed available on
each page, but we discover that no matter which page the user selects the login option on,
the user is always left on the application home page – due to the navigation in the
CallbackComponent.

C5.3.2 Preserving application state

The solution to the login navigation problem is to store the current location in the browser’s
SessionStorage before login and then have the CallbackComponent re-direct to that
location after login.

C5: Front-and Authentication 15

Note: Values held in browser LocalStorage are permanent and will persist across browser
sessions until explicitly removed. Values in SessionStorage are only valid for the current
browsing session and are automatically destroyed when the browser tab is closed.

File: C5/src/app/auth.service.ts

...

 public login(): void {
 sessionStorage.url = window.location.href;
 this.auth0.authorize();
 }

...

File: C5/src/app/callback.component.ts

...

 ngOnInit() {
 window.location.href = sessionStorage.url;
 }
...

Finally, we remove the default navigation that re-directs the user to the application home
page after logout. Note that in applications where entire pages are restricted to
authenticated users, it may be necessary to re-direct the user after logout, depending on
the page on which the logout operation is selected.

File: C5/src/app/auth.service.ts

...

 public logout(): void {
 localStorage.removeItem('access_token');
 localStorage.removeItem('id_token');
 localStorage.removeItem('expires_at');
 // this.router.navigate(['/']);
 }

...

C5: Front-and Authentication 16

Testing the application in the browser should demonstrate that users are now able to log in
and log out on any page, while maintaining their position within the application.

C5.3.3 Restricting access to selected content

Finally, we want to restrict the ability to leave a review only to users who have been
successfully authenticated. We achieve this in the same way as we have already seen with
the Login and Logout buttons, using the isAuthenticated() function and the ngIf
directive to only display the review form if an authenticated user is present. Where there is
no logged in user, we provide a message instructing users that they should log in to leave a
review.

File: C5/src/app/business.component.html

...

 <h2>Please review this business</h2>
 <form [formGroup]="reviewForm" (ngSubmit)="onSubmit()">

 ...

 </form>

 <h5 class="text-primary">
 Please log in to leave a review for this business
 </h5>

</div>

